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Haplotype analyses have become increasingly common in genetic studies of human disease because of their ability
to identify unique chromosomal segments likely to harbor disease-predisposing genes. The study of haplotypes is
also used to investigate many population processes, such as migration and immigration rates, linkage-disequilibrium
strength, and the relatedness of populations. Unfortunately, many haplotype-analysis methods require phase in-
formation that can be difficult to obtain from samples of nonhaploid species. There are, however, strategies for
estimating haplotype frequencies from unphased diploid genotype data collected on a sample of individuals that
make use of the expectation-maximization (EM) algorithm to overcome the missing phase information. The accuracy
of such strategies, compared with other phase-determination methods, must be assessed before their use can be
advocated. In this study, we consider and explore sources of error between EM-derived haplotype frequency estimates
and their population parameters, noting that much of this error is due to sampling error, which is inherent in all
studies, even when phase can be determined. In light of this, we focus on the additional error between haplotype
frequencies within a sample data set and EM-derived haplotype frequency estimates incurred by the estimation
procedure. We assess the accuracy of haplotype frequency estimation as a function of a number of factors, including
sample size, number of loci studied, allele frequencies, and locus-specific allelic departures from Hardy-Weinberg
and linkage equilibrium. We point out the relative impacts of sampling error and estimation error, calling attention
to the pronounced accuracy of EM estimates once sampling error has been accounted for. We also suggest that
many factors that may influence accuracy can be assessed empirically within a data set—a fact that can be used
to create “diagnostics” that a user can turn to for assessing potential inaccuracies in estimation.

Introduction

Haplotype analyses have become increasingly popular
tools for linkage-disequilibrium assessment, disease-gene
discovery, genetic demography, and chromosomal-evo-
lution studies. However, many haplotype-analysis meth-
ods rely on phase information from the individuals under
study. Phase can be established by genotyping family
members of each study subject to infer parental chro-
mosomes, but this requires recruitment and genotyping
of relatives, who, for many late-onset disorders, may sim-
ply not be available. An alternative involves the collection
of genealogical information on all subjects to infer an-
cestral haplotypes, but this is again laborious. Laboratory
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techniques such as long-range PCR or chromosomal iso-
lation have also been used to determine haplotypes in
diploid individuals (Michalatos-Beloin et al. 1996), but
these approaches are technologically demanding and of-
ten cost-prohibitive. For these reasons, haplotype-based
methods have not been widely used on samples of un-
related diploid individuals, such as those typically col-
lected as part of traditional human case-control, genetic
epidemiologic, and population genetic studies.

As a solution to this problem, several rule-based and
likelihood-based methods for estimating haplotype fre-
quencies from a sample of genotyped but unphased dip-
loid individuals have been explored, including a sequen-
tial haplotype inference algorithm (Clark 1990), and
several expectation-maximization (EM)–based algo-
rithms (Excoffier and Slatkin 1995; Hawley and Kidd
1995; Long et al. 1995). EM-based haplotype frequency
estimates can accommodate several loci with an arbitrary
number of alleles. However, analysis of a large number
of loci and alleles can result in a heavy computational
burden. Furthermore, most reports on the use of EM
methods have not provided information on the validity
of the estimates or the influence, on estimation accuracy,
of population genetic factors, such as departures from
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Figure 1 Conceptual framework for simulation studies and ac-
curacy comparisons.

Figure 2 Distribution of maximum log-likelihoods from the es-
timation procedure, by program settings: convergence criterion, max-
imum iterations, and number of restarts at different random initial-
frequency values. For these analyses, 500 data sets of 200 individuals
each were simulated for a five-locus system (mean frequency .03125;
variance 10.0). The analyses for each panel were performed on the
same batch of 500 simulated sets each time, with the parameter of
interest progressively adjusted to a more stringent value (the standard
error of the maximum log-likelihood values for all situations was .098).

Hardy-Weinberg equilibrium (HWE) and actual haplo-
type frequency.

With the availability of single-nucleotide polymor-
phism (SNP) information across many genomic regions
and the projected availability of dense SNP maps, hap-
lotyping methods using this type of information will be-
come increasingly important. With this in mind, we have
developed an EM-based haplotype frequency estimation
procedure tailored for biallelic data and have imple-
mented it in a computer program that then tests for dif-
ferences in haplotype frequencies between groups of
individuals (N. Schork, D. Fallin, A. Cohen, L. Essioux,
I. Chumakov, M. Blumenfeld, D. Cohen, unpublished
data). However, before such statistics can be advocated,
it is important to evaluate the accuracy of the EM-derived
haplotype frequency estimates.

In this study, we consider the accuracy of the estima-
tion procedure by measuring, through simulation, the
error between EM-based haplotype frequency estimates
and their true frequencies. We highlight the strong role
of sampling error relative to any additional error incurred
via the EM-estimation process. We then consider accu-
racy as a function of several population and data-set
characteristics and explore the utility of data-based di-
agnostics for assessing probable accuracy.

Material and Methods

Our investigation of the accuracy of EM-based haplotype
frequencies from unphased diploid genotype data in-
volved simulating sample diploid data sets under different
generating (or “true”) population scenarios. From these
generating haplotype frequency values, we drew a random
sample of a specified size and then masked the haplotype
resolution for each individual, simply by recording the
multilocus genotypes separately, and then estimated the
haplotype frequencies via our EM algorithm. This results

in three main steps of the simulation-and-estimation pro-
cedure, as is shown in figure 1. We then assessed the
“accuracy” of the EM frequency estimates by comparing
the final estimated haplotype frequencies ( ) to either theEk

original generating population frequencies ( ) or theGk

haplotype frequencies in the sampled sets ( ).Sk

It is important to note the distinction between these
comparisons, because they affect different issues in ac-
curacy assessment. If the main interest is assessment the
overall validity of final haplotype frequency estimates
with respect to the true population values, the compar-
ison of interest would involve estimated versus generating
values ( vs. ). However, this comparison includes theE Gk k

effect of sampling error, which would exist even for hap-
lotype-based methods that involve known phase, as is
suggested in figure 1. A more relevant comparison for
practical purposes, then, would be the accuracy of hap-
lotype frequency estimation in relation to the haplotype
frequencies from a sampled set ( vs. ), because thisE Sk k

would only reflect any additional error caused by the
estimation procedure itself. In this paper, we present both
comparisons, highlight the different interpretations, and
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Figure 3 Influence of sample size on haplotype frequency estimates. A and B, Haplotype frequencies at the three steps of the simulation
procedure. Generating frequencies (Gk [line]), sample frequencies (Sk [triangles]), and resulting haplotype frequency estimates from the EM
algorithm (Ek [unblackened circles]) for a five-locus system with equally frequent population haplotype frequencies, with sample size set to

(A) and (B) are shown. C, Average MSE and 95% CI for batches of 500 data sets of each sample size for five-locus haplotypesN p 50 N p 500
generated under the N(1/k,j2) model. Unbroken line denotes comparisons of EM estimates to sample values (SE); dotted line, EM estimates to
generating parameters (GE).

emphasize the roles of sampling error and possible sam-
pling bias. We show that the additional error incurred
solely by the estimation procedure is very low. In fact,
the absolute difference between final frequency estimates
and their true frequencies in a sample set is !.04 in most
situations.

Simulated Data Sets

The first step in the simulation process involved the
designation of population parameters, or generating hap-
lotype frequencies (fig. 1, Step G). These generating hap-
lotype frequencies for each data set, ( ,…, K;G k p 1k

where , the number of possible haplotypes givenLK p 2
L loci), were drawn randomly from a normal distribution
with mean and variance . The gen-2 21/K j [N ∼ (1/K,j )]
erating frequencies could be constrained to be equally
frequent, by setting (i.e., ),2j p 0 G p ... p G p 1/K1 K

or they could be allowed to vary across all possible values
between 0 and 1 by increasing the value. We accom-2j

plished this by drawing each from N(1, ) and then2G jk

scaling them to sum to 1.0, by dividing the squared value
of each deviate by the sum of the squared values of all
deviates.

The choice of the normal distribution provides incre-
mental departures from uniform haplotype frequencies
while allowing all possible haplotype frequencies to be
covered by setting the variance to be very large. This
approach covered a wide variety of haplotype frequency
distributions across the simulated data sets, and allowed
us to measure accuracy as a function of the departure of
the haplotype frequency values from uniformity ( ).2j

However, to more thoroughly address the influence of
haplotype frequencies on EM estimation and to ensure
that haplotype frequency extremes were amply sampled,
we also performed the simulations by drawing the gen-
erating haplotype frequencies from a Dirichlet distribu-
tion with parameters ( ). When this was em-a k p 1,...,Kk

ployed, we used two approaches for initial ak parameter
values. First, we set each of the ak parameters equal to 1
(uniform frequencies for each haplotype), and, second,
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Figure 4 MSE of the final estimates as a function of the amount of missing phase information per data set. The X-axis indicates the
proportion of heterozygous loci in the entire data set as a measure of the overall missing phase information in the sample. MSEs for the SE
(unbroken line) and GE (dotted line) comparisons are plotted along the Y-axis. A, Data sets with generating haplotypes drawn for the normal
distribution scenario. B, Data sets with generating haplotype frequencies drawn from a Dirichlet distribution with one haplotype parameter set
at 50 and the rest set equal and with Hardy-Weinberg disequilibrium among the haplotypes set to .05. Both panels are based on 10,000
simulated sets (size 200 individuals), for a five-locus system with 15 restarts, 150 maximum iterations, and convergence set to 10�5.

we set one parameter to be very large, relative to the rest,
to ensure a dramatic dispersion of haplotype frequency
values. We then measured haplotype frequency dispersion
within each data set by performing a test of the uni-2x

formity or homogeneity of resulting haplotype frequency
values per simulation (denoted as a test of uniformity).2x

Once the parameter values (i.e., generating haplotype
frequencies) were determined by use of the methods
above, a sampling procedure was done in a population
with the specified generating haplotype frequency values
for simulation. N simulated individuals were sampled (fig.
1, Step S) by random assignment of two haplotypes to
each individual according to the generating probabilities
of the K haplotypes.

The above sampling scenario resulted in some data sets
with significant departures from Hardy-Weinberg pro-
portions at the constituent loci. However, to ensure that
ample numbers of such data sets were created to study
the effect of Hardy-Weinberg disequilibrium (HWD) on
estimation accuracy, we also induced HWD for some sim-
ulation batches. We assigned a first haplotype to each
individual, with probabilities equal to the generating fre-
quencies. Then the second haplotype for each individual
was assigned according to the conditional probability for
each of the K haplotypes, given the first haplotype:

P(H2,H1)
P(H2FH1) p .

P(H1)

These joint probabilities can be expressed as functions of
HWD values. With this method, HWD could be induced
in a way that could create more homozygosity or hetero-
zygosity, by adjusting the strength and sign of the dise-
quilibrium values.

The sample frequencies of each of the K haplotypes for
each simulated data set (Sk ) were then cal-[k p 1,...,K]
culated by counting the number of occurrences of each
haplotype in the sample and dividing by 2N, the total
number of haplotypes in a sample of N diploid individ-
uals. The phase information in the resulting sample set
was masked by storing the genotypes for each locus sep-
arately. These multilocus genotype data were then run
through our program to produce the final estimated hap-
lotype frequency values (Ek, ) for accuracyk p 1,...,K
comparisons (fig. 1, Step E).

Ultimately, our simulations were not based on a par-
ticular population-genetics model but, rather, encom-
passed a wide variety of allele and haplotype frequencies,
allelic association strengths, and deviations from HWE
scenarios. We believed that this would allow us to assess
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Figure 5 Accuracy of program estimates by haplotype frequency distributions within data sets. MSE measures for the SE (unbroken line)
and GE (dotted line) comparisons are plotted along the Y-axis. In panels A–C, the X-axis indicates the frequency of the most common estimated
haplotype per data set. In panels D–F, the X-axis indicates the frequency of the least common (nonzero) estimated haplotype per data set. A
and B, Batches of data sets simulated under the normal generating distribution scenario. C and D, Generating haplotype frequency parameter
values drawn from a Dirichlet distribution with equal parameters. E and F, Generating haplotype frequency parameter values drawn from a
Dirichlet distribution with one extreme parameter value (∼90%). Each panel is based on 10,000 simulated sets (size 200 individuals), for a
five-locus system with 15 restarts, 150 maximum iterations, and convergence set to 10�5.

accuracy in as wide a range of scenarios as possible (even
some that would be considered rare and possibly un-
realistic). Particular situations of interest then could be
drawn from the batches of simulated data sets produced
for comparison purposes.

SNP Haplotype-Estimation Program

We implemented the haplotype frequency estimation
via the EM algorithm following the procedure outlined
by Excoffier and Slatkin (1995). For brevity, we refer the
reader to their article for details. However, the main dif-
ference between our implementation of the EM algorithm
and those previously reported is that our specification is

for biallelic loci only. In addition, our implementation
enumerates all possible haplotypes, , and diplo-H ,...,H1 K

type configurations (i.e., specific haplotype pairs, )HFHj l

consistent with each individual’s multilocus genotype data
and stores them throughout the iterations of the algo-
rithm. Such storage and retrieval would be prohibitive for
a large number of multiallelic loci, but they allow us to
avoid having to rederive consistent diplotypes at each it-
eration, thereby increasing the speed of the algorithm.
Another feature of our implementation of the EM algo-
rithm is that we allow the program to be rerun auto-
matically with different initial values to avoid convergence
to local maxima. The number of such “restarts” can be
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Figure 6 Accuracy of program estimates as a function of the
dispersion of haplotype frequency values within a data set. MSE mea-
sures for the SE (solid line) and GE (dotted line) comparisons are
plotted along the Y-axis. In panel A, the X-axis represents the variance
used to derive generating haplotype frequency values under the normal
distribution scenario. A total of 500 data sets were simulated for each
variance value. In panels B and C, the X-axis represents the x2 value
for a test of equality of haplotype frequency values within each data
set. These panels represent batches from simulations under the Dirich-
let distribution with either uniform parameters (B) or one extreme
parameter (C). Both panels are based on 10,000 simulated data sets.
All simulations were done for samples of 200 individuals, for a five-
locus system with 15 restarts, 150 maximum iterations, and conver-
gence set to 10�5.

specified by the user, as can the convergence criterion and
maximum iterations allowed per run. Our program is
available for academic use by contacting one of the au-
thors via e-mail.

Measures of Estimation Accuracy

Our primary measure of accuracy between final fre-
quency estimates and either sample or generating values
was the mean squared error (MSE). The MSE measure
incorporates all K haplotype frequencies and thus cap-
tures the overall difference in haplotype frequencies be-
tween estimated and true values for a particular data set.
For example, the MSE between a set of final haplotype
frequency estimates and their corresponding generating
values would be for2 LMSE p [S (E � G ) ]/2 k pge k k k

. We plot MSEge, as well as the MSE between theL1...2
final estimates and their sample-set values (MSEse), as a
function of the several factors under investigation. We
again emphasize our focus on MSEse because it measures
the error attributed to the estimation procedure itself,
rather than the sampling error.

As an ancillary measure of error, we also calculated the
absolute difference (or absolute “bias”) between the es-
timated frequency of each haplotype ( ) and either itsEk

frequency in the simulated sample ( ) or its generatingSk

value ( ). This provides a more intuitive measure of theGk

magnitude of error and allows for the comparison of re-
sults for different haplotype frequency values individually
within and across data sets, whereas the MSE measures
the composite error across all haplotype frequencies in a
data set. For example, the bias between the estimated
frequency of haplotype 1, E1, and its generating popu-
lation frequency, G1, would be . As the1B p FG –E Fge 1 1

number of loci increases, recording this value for every
possible haplotype ( possibilities) and every pos-LK p 2
sible comparison would be prohibitive. As a result, we
chose to calculate this absolute bias for a randomly chosen
haplotype for each simulation. In addition, to measure
the relative amount of error for rare versus common hap-
lotypes, we also calculated bias for the haplotypes cor-
responding to the largest and smallest (nonzero) haplo-
type frequency values at each step (Bgmax; Bgmin for
generating values, Bsmax; Bsmin for sample values, Bemax/Bemin

for final estimates). Thus, for example, Bemax
se p

FEemax�SemaxF, which reflects the difference between the
final estimate and sample value for the haplotype with
the largest frequency among the final estimates.

We first generated 500 data sets per simulation batch,
to assess certain specifications to be used throughout the
accuracy assessments. We then generated 1,000 simula-
tions per batch for each sample size and variance param-
eter. We also generated 10,000 simulated data sets to ex-
amine the simultaneous effect of the investigated factors
under the normal distribution scenario and then generated
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Figure 7 Accuracy of program estimates by number of constit-
uent loci with “rare” allele frequencies per data set. MSE measures
for the SE (unbroken line) and GE (dotted line) comparisons are plotted
along the Y-axis. A, Batch simulated under the normal generating
distribution scenario. MSEse and MSEge have separate axes because of
orders of scale. B, Generating haplotype frequency parameter values
drawn from a Dirichlet distribution with equal parameters. C, Gen-
erating haplotype frequency parameter values drawn from a Dirichlet
distribution with one extreme parameter value (∼90%). Each panel is
based on 10,000 simulated sets (size 200 individuals), for a five-locus
system with 15 restarts, 150 maximum iterations, and convergence
set to 10�5.

10,000 under each of the Dirichlet scenarios described
above, as well as for the HWD scenarios also discussed.

Results

Algorithm Specifications

To set optimal conditions for measuring the effect of
population and data set characteristics on accuracy of
haplotype frequency estimation, we first assessed the in-
fluence of several algorithm specifications. Because the
EM algorithm may converge slowly and may converge to
a local maximum, we examined the effect of the conver-
gence criteria used, the maximum iterations allowed, and
the number of algorithm restarts with new random initial
values. Figure 2 shows the average increase and ultimate
“plateau” of maximized log-likelihoods as the three pa-
rameters become increasingly stringent. From these re-
sults, setting the program to 15 restarts, the maximum
number of iterations to 150, and the convergence crite-
ria to was thought to suffice for all subsequent�510
simulations.

Sampling Error and Sample Size

We found that much of the discrepancy between the
true generating or population haplotype frequencies and
those estimated from the sample is due to sampling error,
rather than to the estimation procedure per se. This can
be seen in figures 3A and 3B, which show sample sets of
sizes and that were drawn from equallyN p 50 N p 500
frequent population haplotype frequencies for a five-locus
system ( for ). It is apparent thatG p 1/32 k p 1,...,32k

a large portion of the overall error (figs. 3A and 3B, circles
relative to the unbroken horizontal line) is due to the
sampling error between the generating and sample-set val-
ues (figs. 3A and 3B, triangles relative to unbroken line).
The effect of sample size across several values is shown
in figure 3C, in which the MSE is shown to decrease
with increasing sample size. This was also reflected in the
results of a regression analysis of MSEge on MSEgs and
MSEse, in which a large fraction of the variability (∼80%)
in MSEge over the simulations was attributed to MSEgs

rather than to MSEse (data not shown).

Ambiguity and Missing Phase Information

The number of “unphased” or ambiguous individuals
(with respect to haplotypes) in a data set should greatly
influence the accuracy of the frequency estimates, since it
indicates the amount of missing phase information to be
dealt with via the algorithm. Because all individuals with
more than one heterozygous genotype among the loci
studied are ambiguous with regard to phase, the amount
of heterozygosity in a data set can be used as a proxy for
the amount of missing data. Figure 4 shows the MSE
measures as a function of the proportion of heterozygous
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Figure 8 Accuracy of program estimates of HWD. The Y-axis indicates MSE between final haplotype frequency estimates and sample-
set values (unbroken line) or generating population parameter values (dotted line). Each panel is based on 10,000 simulated sets under the
extreme Dirichlet generating frequency model with HWD (either toward heterozygosity, [A and C] or homozygosity [B and D]) introduced at
the haplotype level during the sampling process. Aand B, MSE by the number of loci per simulation with significant HWD. C and D, MSEse

as a function of the most extreme HWD coefficient across loci per simulation. All simulations were done for 200 individuals, for a five-locus
system with 15 restarts, 150 maximum iterations, and convergence set to 10�5.

loci in each data set. As expected, there is a substantial
increase in error as the amount of ambiguity increases,
although the error associated with the greatest observed
heterozygosity is still very small (i.e., ∼.00012). Similar
results were obtained for all of the simulating distribution
strategies. In addition, the error associated with estimates,
compared with their sampled values (S vs. E), is consis-
tently lower than the overall error (G vs. E).

Haplotype Frequency Distribution

The accuracy of the estimation procedure as a function
of the distribution of haplotype frequencies within a par-
ticular data set can be measured in many ways. We first
describe results for the MSE values as a function of the
largest and smallest haplotype frequencies within each
data set, as a proxy measure for the dispersion in hap-
lotype frequency values within each data set. As haplotype
frequencies become increasingly less equal or uniform, the
most common and least common frequencies will become
increasingly extreme. With this in mind, the plots in figure
5 show a decrease in error with increasing maximum
haplotype frequencies (panels A–C) and decreasing min-
imum frequencies (panels D and E). This is consistent

with the notion that estimates will be better when there
are some very common haplotypes and many very rare
(∼0 frequency) haplotypes in the population. The reason
for this is that true 0-frequency haplotypes can be accu-
rately estimated as 0, since there will be little evidence for
their nonzero frequency in a data set. However, when the
haplotypes are more or less equally frequent, the fre-
quency estimates are less accurate. The only situation in
which this is not directly apparent is reflected in the plot
of MSE by minimum allele frequency in the extreme Dir-
ichlet case (fig. 5E). In these data sets, the lack of an
apparent trend in error with decreasing frequency values
probably is due to the decreased range of minimum hap-
lotype frequency values under the extreme-frequencies
simulations. However, the overall range of error for this
batch of simulations is much less than the error for the
other simulations, supporting the notion that highly dis-
parate haplotype frequencies correspond to better overall
accuracy.

This point is also addressed in figure 6, in which MSE
is plotted as a function of the variance value used to
generate the population haplotype frequencies for the

-derived simulation (fig. 6A), as discussed in the2N(1/K,j )
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Figure 9 Accuracy of program estimates by LD. The Y-axis
indicates MSE between final haplotype frequency estimates and sam-
ple-set values (unbroken line) or generating population parameter val-
ues (dotted line). The X-axis indicates the average D′ LD value across
all pairwise comparisons per simulation. A, Simulations generated un-
der the normal distribution scenario. B, Population haplotype fre-
quency values drawn from a Dirichlet distribution with equal param-
eters. C, Population haplotype frequency values drawn from a Dirichlet
distribution with one extreme parameter value (∼50%) and HWD
induced toward homozygosity. Each panel is based on 10,000 simu-
lated sets (size 200 individuals), for a five-locus system with 15 restarts,
150 maximum iterations, and convergence set to 10�5.

Material and Methods section. For the Dirichlet-derived
simulations, we performed a x2 test of equality of hap-
lotype frequency values per data set such that large x2

values suggest greater departures from uniformity. The
MSE values as a function of these x2 values per data set
are shown in figure 6B and 6C. These plots again show
a decrease in estimation error with increased dispersion
(i.e., nonuniformity) of haplotype frequency values.

Haplotype Frequency Values

The above results relate to the distribution of haplotype
frequencies within each data set. They do not address the
amount of error to be expected for a particular haplotype
frequency value. The accuracy of the EM procedure with
respect to rare haplotypes is of interest to many research-
ers who are interested in population genetics or who are
concerned with the possibility that rare haplotypes may
be important for disease risk. The results above show that
the EM algorithm performs well when there are very com-
mon and zero-frequency haplotypes in a population. To
assess the error rates for large versus small haplotype fre-
quency values within a particular setting, we compared
the absolute bias (or absolute difference) between final
estimates and their sample or generating values (Bse or Bge)
for the most frequent and least frequent (nonzero) hap-
lotype within each data set. The bias measures for the
largest and smallest haplotypes were correlated for all
simulating scenarios, supporting the influence of the over-
all distribution of haplotype frequencies on estimation
error rates. Plots and paired t tests of the bias values
comparing estimates with true sample values for the most-
and least-frequent haplotypes among the estimated values
Bemax

se and Bemin
se suggest greater bias for the common

haplotypes in all simulation scenarios (data not shown),
although this was thought to be due, in part, to the rel-
atively smaller range of the possible error values for the
frequencies of rare haplotypes.

Another important measure in this regard is the number
of times a rare haplotype is lost (i.e., estimated as having
0 frequency when it has a nonzero frequency in the pop-
ulation) because of the EM estimation. To examine this,
we recorded each haplotype that was missed in the final
set of estimates for each simulation. Across simulation
strategies, only 0–3 haplotypes, on average, were lost be-
tween the sample sets and the EM estimates. Of these,
∼90% were haplotypes with frequencies !1% (see table
1). We also recorded the number of simulations in which
haplotypes of a particular value were lost among the final
estimates. To monitor the number of missed haplotypes
across simulations in this way, we tallied the frequency
of simulations per batch in which a rare haplotype (de-
fined as that with the smallest frequency 1.001 [or .01 in
some analyses]) was missed in the final estimates. As might
be expected, rare haplotypes with population frequencies
of ∼.1% were lost in the final estimation in 64%–83%
of the 10,000 simulations (see table 1). The number of
simulations in which rare haplotypes among the sample
data (defined with the same minimum threshold: smallest
frequency �.001) were lost in the final estimates was
lower in all simulation scenarios (table 1, column 3). This
again shows the importance of sampling error in haplo-
type frequency estimation. In fact, in the extreme Dirichlet
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Figure 10 Accuracy of program estimates by number of loci in haplotype. The Y-axis indicates MSE between final haplotype frequency
estimates and sample-set values (unbroken line) or generating population parameter values (dotted line). The categories represented on the X-
axis correspond to 1,000 simulations each (2-, 3-, 4-, 5-, 7-, and 10-locus systems). All simulations were for 200 individuals, with 15 restarts,
150 maximum iterations, and convergence set to 10�5.

scenario, in which one haplotype is very frequent and the
rest are very rare, 67% of the simulations lost the “rare”
haplotype designated from the population set, but only
8% lost the rare haplotype defined from the haplotypes
available in the sample set. This suggests that the difficulty
in determining rare haplotype frequencies is often a sam-
pling problem, rather than an error in the frequency-es-
timation procedure: if the haplotype is never sampled, it
cannot be estimated well. If the threshold of “rare” is
changed to �1%, the proportion of simulations losing
the rare haplotype from the population or sample sets
decreases dramatically. Again, the proportion of loss of
rare population haplotypes is greater than the loss of rare
sample haplotypes.

Allele Frequencies

Given the results for haplotype frequency distributions
within data sets, it would be expected that allele fre-
quencies at the relevant loci may predict accuracy levels,
since rare alleles at biallelic loci will create some very rare
(and, thus, some very common) haplotypes. To assess this,
we tallied the number of loci within each data set with a
minor-allele frequency below a particular threshold (des-
ignated as “rare” for those simulations). Figure 7 shows
plots of the MSE measures as a function of the number
of constituent loci with “rare” alleles (defined by a lower
frequency threshold particular to each simulation batch).
Data sets with increased numbers of “rare” alleles showed
increased accuracy in all simulating scenarios. We also
calculated the minimum and the average minor-allele fre-
quency across all constituent loci per data set and plotted

these by MSE and bias. These also showed a decrease in
error with decreasing minor allele frequencies (figures not
shown).

Departure from HWE

Departure from HWE may be a substantial source of
error in EM haplotype frequency estimation, simply be-
cause the algorithm relies on HWE in its “expectation”
step. Thus, one might expect to see a loss of estimation
accuracy when alleles at the loci are not in HWE. How-
ever, departures from HWE may result in an excess ho-
mozygosity, which could, in effect, decrease the amount
of ambiguous phase information in a data set and, as
such, improve estimation accuracy. To assess the effect of
HWE departures, especially with respect to excess ho-
mozygosity versus heterozygosity, we induced positive
and negative HWD (toward homozygosity or heterozy-
gosity) among the sampled haplotypes in the simulation
procedure (as described in the Material and Methods sec-
tion, above). We calculated the HWD coefficient, D, (Weir
1996) and x2 statistics for a test of HWE at each locus
for each simulation. Figure 8 plots MSE versus two mea-
sures of HWD: excess heterozygosity (panels A and C)
and excess homozygosity (panels B and D). The first two
panels (fig. 8A and 8B) show the effect of increasing num-
bers of loci per simulation, with significant departures
from HWE (as measured by x2 values 13.84) on MSE. In
panel A, there is a clear increase in error as the number
of loci showing HWD (toward excess heterozygosity) in-
creases, reflecting the influence of heterozygosity on es-
timation accuracy. The corresponding plot of error be-
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Table 1

Proportion of 10,000 Simulations in Which the Designated “Rare” Haplotype Was Lost in the Final
Haplotype Frequency Estimates, and the Average Number of Haplotypes Missed per Simulation

GENERATING

DISTRIBUTION

FOR BATCHES

% OF SIMULATIONS IN WHICH THE “RARE”
HAPLOTYPE WAS LOST AVERAGE

NO. OF

SAMPLED

HAPLOTYPES

MISSED PER

SIMULATION

% OF

MISSED

HAPLOTYPES

WITH

FREQUENCIES

!.01

Smallest Frequency �.001 Smallest Frequency �.01

Population
Minimum
Haplotype

Sample
Minimum
Haplotype

Population
Minimum
Haplotype

Sample
Minimum
Haplotype

Normal 68.27 50.72 15.22 9.65 3 97
Dirichleta 64.46 54.99 22.35 17 3 88
Dirichletb 66.89 7.45 2.11 0 0 100
Dirichletc 82.91 60.79 7.11 8.67 2 93

a Population frequencies drawn from Dirichlet distribution with equal parameter values.
b Population frequencies drawn from Dirichlet distribution with one extreme parameter value.
c Population frequencies drawn from Dirichlet distribution with one extreme parameter value and HWD

( ) induced between haplotypes during sampling.D p .05

tween the EM estimates and their sample values in panel
B shows no increase in error with more-extreme HWD
values (towards excess homozygosity). This may indicate
the relative increases in phase information as loci depart
from HWE. The increase in overall error with increasing
homozygosity, in comparison, may reflect sampling error.
Increased departures from HWE may result in the loss of
some haplotypes in the sample set and thus may increase
error. This again emphasizes the role of sampling error,
rather than estimation error, in accuracy. Panels C and D
of figure 8 show MSE between EM estimates and their
sample values as a function of the most extreme HWD
coefficient across the constituent loci for each simulation.
In accordance with the results for the number of loci not
in HWE, there is a clear increase in error as D coefficients
become more negative (i.e., toward excess heterozygosity
[panel C]), while this effect is not seen for increasingly
positive D values (toward homozygosity).

Linkage Disequilibrium

The amount of linkage disequilibrium (LD) between
loci should also have an important effect on the haplo-
type-estimation accuracy, since haplotypes should be
more uniformly distributed for loci in complete equilib-
rium and roughly equal allele frequencies. We assessed
LD by computing Lewontin’s (1964) D′ for all pairs of
loci as well as x2 statistics gauging the significance of the
LD. Plots of the accuracy measures by the D′ values are
shown in figure 9. In the three simulation scenarios
shown, the error between estimates and their sample fre-
quencies decreases and the average LD across the con-
stituent loci becomes stronger. The same effect is seen for
the overall error in the normal and uniform Dirichlet sim-
ulating scenarios. For the extreme Dirichlet case, the over-
all error does not show an obvious trend, probably be-

cause of the added effect of sampling error. Plots assessing
the average x2 value for tests of pairwise LD also showed
this pattern (plots not shown).

Number of Loci

Figure 10 shows an overall increase in accuracy as the
number of loci analyzed increases when accuracy is as-
sessed relative to their generating values. However, we
found that estimation error appears to peak, for four- or
five-locus systems, when final frequency estimates are
compared with sample values. This initial increase in es-
timation error may be expected, given the increase in loci
and the corresponding increase in possible haplotypes to
be estimated for the sample size, and could reflect an
increase in missing data. The decline in sample-to-estimate
error with a larger number of loci (15) may be somewhat
artificial. Consider the fact that a large number of loci
likely will generate a large number of possible haplotypes,
many with 0 frequency. Samples with many 0-frequency
haplotypes would result in frequency estimates of the hap-
lotypes as 0, and the MSE across them would be low as
a result.

Multiple Factors

In an attempt to assess the relative importance of all
the factors studied with respect to the accuracy of hap-
lotype frequency estimation, we entered the factors into
a regression model predicting the mean squared error be-
tween final estimates and their frequencies among the
sample set for each simulation (MSEse). Table 2 displays
the results of single-factor analyses, as well as those of
this multiple-regression approach, for the 10,000 simu-
lations under the normal generating scenario. Because
most of the factors we investigated can be assessed within
a particular data set of interest, such quantification of the
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Table 2

Regression of MSE between Estimated Frequencies and Their Sample Frequencies (MSEse) on All Factors

FACTORa

SINGLE-FACTOR REGRESSION MULTIFACTOR REGRESSION

Correlation R2 F P1F
Adjusted

Coefficient T P1FTF

Constant … … … … … 12.29504 1.96E-23
Proportion of heterozygotes .16944 .029 295.531 !.001 .036430 2.468120 .013599
x2 for equality of haplotype frequencies �.37370 .140 1622.86 !.001 �.436520 �35.78120 1.96E-23
No. of loci with “rare” alleles �.06383 .004 40.902 !.001 .141553 10.79422 1.96E-23
Maximum HWD value �.11192 .013 126.825 !.001 �.105800 �9.295550 1.77E-20
Average LD D′ value �.21809 .048 499.281 !.001 .021182 1.881338 .059955

a Analyses were performed on 10,000 simulations under the normal-distribution generating model.

relative predictive value of each factor may allow re-
searchers to assess how likely a particular data set is to
provide reliable haplotype frequency estimates. From the
full-model regression results, as well as from univariate
analyses, it appears that all factors show a significant
trend in the direction observed in the relevant plots of
figures 4–9. The dispersion of haplotypes within a data
set appears to be the strongest predictor from the uni-
variate and multiple-regression models.

Discussion

We have demonstrated, via extensive simulation studies,
that haplotype frequency estimation for biallelic diploid
genotype samples via the EM algorithm performs very
well under a wide range of population and data-set sce-
narios. In fact, even the worst haplotype frequency esti-
mates from our studies were highly accurate (for five-locus
haplotypes, 60% of the estimates lie within 3% of their
generating values, and 96% lie within 6% of their gen-
erating values). Ultimately, our studies suggest that much
of the overall error between the original population pa-
rameters and the final frequency estimates is due to sam-
pling error, rather than to algorithmic and estimation
problems or inaccuracies. This is supported by the in-
crease in overall accuracy with increasing sample size.
This point deserves emphasis, because it implies that
greater attention should be paid to the sampling scheme
for all haplotype-based study designs. The additional er-
ror incurred via estimation, versus some other form of
phase determination, is relatively minor in comparison.
An improvement in accuracy of the estimation procedure
itself (as measured by sample-estimate [ES] comparisons)
with increased sample size was also observed. This is likely
a function of several factors. The EM algorithm we used
assumes HWE, and larger sample sizes provide better rep-
resentation of HWE, if it truly exists in the source pop-
ulation. For this reason, both the population-sample (SG)
and ES error levels decreased with large sample sizes. In
addition, the algorithm works best with low amounts of
“ambiguous” individuals (i.e., individuals with unresolv-

able phase information), and larger sample sizes also pro-
vide a greater number of unambiguous individuals, re-
sulting in a further decrease in error between the sample
and estimated values with increasing sample size.

We also find that the most influential effect on esti-
mation accuracy is the dispersion of allele and haplotype
frequency values within a data set. As the haplotype fre-
quencies become more unequal, the more-frequent hap-
lotypes can be estimated accurately. In addition, when
many haplotypes have zero frequency, their absence in
the data set will generally allow accurate estimation of
this zero frequency, contributing to a small overall error
in frequency estimation.

In addition to the effect of overall dispersion of hap-
lotype frequencies within a data set, we also examined
the relative accuracy of the estimation of rare alleles ver-
sus common alleles. Our results show that, although it
is true that very rare haplotypes (frequency in population
�.1%) are often lost among the final estimates (i.e., es-
timated as frequency 0), this may be more a result of
sampling error (because these haplotypes were often not
included in the sample) than of EM estimation. If the
primary interest is determination of disease-predisposing
haplotypes, it may be argued that haplotypes not seen in
the case sample are unlikely to have contributed to dis-
ease status among cases. In this vein, the concern would
be the extent to which rare disease-predisposing haplo-
types among the sampled individuals are missed because
of the estimation procedure. Although we show that this
may be a problem for very rare haplotypes among the
sampled individuals (frequency in the sample �.1%), the
likelihood that such extremely rare haplotypes contribute
appreciably to the risk of disease among the affected
individuals in the sample is very low. Haplotypes with
frequencies 11% among the sampled individuals do not
tend to be lost that frequently, suggesting that haplotype
estimation for genetic epidemiological studies may be a
viable method. Ultimately, this will be a function of the
particular disease predisposition in question, but, for
most common disorders, we emphasize that the impor-
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tance of the error incurred via phase estimation is likely
to be much less than that of sampling strategy.

The influence of departures from HWE on estimation
accuracy emphasizes the importance of the directionality
of such disequilibrium. It might be expected that depar-
tures from HWE, given the EM algorithm’s exploitation
of HWE to compute expected haplotype frequencies,
would significantly influence the accuracy of the resulting
estimates. However, as was noted recently by Osier and
colleagues (1999), there is balance between loss of ac-
curacy caused by departure from HWE and gain of ac-
curacy caused by the decrease in missing phase infor-
mation with an excess of homozygosity, such as might
result from departures from HWE. Our studies bear this
out as well, since departures from HWE that result in an
excess heterozygosity do lose accuracy, whereas those
that result in an excess homozygosity do not. This issue
is of particular relevance when one has sampled diseased
individuals, since an excess homozygosity may be ex-
pected at the disease allele and all those in LD with it,
especially if the disease is recessive (Nielsen et al. 1998).

Our use of a regression model to assess the simulta-
neous effect of different factors on estimated accuracy
may have some utility. Many of the factors that we stud-
ied in terms of their influence on accuracy can be assessed
within a given data set (e.g., evidence for departure from
HWE, number of heterozygous genotypes, pairwise LD
among the loci, relative frequency of haplotypes among
the final estimates, etc.). Thus, through the regression-
model outcomes, one might be able to predict MSE or
bias from their own data. The results of this prediction
could then serve as a “diagnostic” for potential inaccu-
racies in haplotype frequency estimates caused by fea-
tures in the relevant data set. We intend this analysis to
be an initial example of the possibility for such diag-
nostics within an observed data set, and we emphasize
that this regression approach is not without problems.
For example, we assumed linearity and did not consider
interaction effects between the factors, which may be
justified in our model, given the relationship between the
factors. Furthermore, possible biases could be inherent
in the simulated data sets, which were not explored. The
single-factor regressions do provide a measure of the rel-
ative importance of each factor in predicting error caused
by the estimation procedure, and they also provide tests
of significance of the trends plotted in the figures pre-
sented. More work regarding the utility of the multiple-
regression approach is needed, however.

Ultimately, the results of our studies suggest that even
in the worst cases, individual haplotype frequency esti-
mates via the EM algorithm do not deviate much beyond
5% of their true value among sampled individuals for

sample sizes �100. Researchers should be concerned
with the quality of sampling to a much greater extent
than the possibility for estimation errors when assessing
haplotypes among unphased individuals. In light of this,
EM estimation of haplotype frequencies for multiple dial-
lelic genotypes may be a viable alternative to the recruit-
ment of additional family members or intensive labora-
tory haplotyping for haplotype-based genetic studies.
Finally, we would like to emphasize that the results in
this study refer to the accuracy of haplotype frequency
estimation only. The extent to which the factors we stud-
ied influence any statistical-inference procedures that
make use of haplotype frequency estimates demands in-
dependent attention. We are currently pursuing such top-
ics for future publication.

Acknowledgments

We would like to thank the reviewers of this manuscript for
their thoughtful suggestions. This work was supported in part
by NIH grants HL94-011 and HL54998-01 (awarded to N.J.S.).

References

Clark A (1990) Inference of haplotypes from PCR-amplified
samples of diploid populations. Mol Biol Evol 7:111–122

Excoffier L, Slatkin M (1995) Maximum-likelihood estimation
of molecular haplotype frequencies in a diploid population.
Mol Biol Evol 12:921–927

Hawley M, Kidd K (1995) HAPLO: a program using the EM
algorithm to estimate the frequencies of multi-site haplo-
types. J Hered 86:409–411

Lewontin RC (1964) The interaction of selection and linkage.
I. General considerations: heterotic models. Genetics 49:
49–67

Long J, Williams R, Urbanek M (1995) An E-M algorithm
and testing strategy for multiple-locus haplotypes. Am J
Hum Genet 56:799–810

Michalatos-Beloin S, Tishkoff SA, Bentley KL, Kidd KK, Ru-
ano G (1996) Molecular haplotyping of genetic markers 10
kb apart by allele-specific long-range PCR. Nucleic Acids
Res 24:4841–4843

Nielsen DM, Ehm MG, Weir BS (1998) Detecting marker-
disease association by testing for Hardy-Weinberg disequi-
librium at a marker locus. Am J Hum Genet 63:1531–1540

Osier M, Pakstis A, Kidd JR, Lee JF, Yin SJ, Ko HC, Edenberg
H, Lu RB, Kidd KK (1999) Linkage disequilibrium at the
ADH2 and ADH3 loci and risk of alcoholism. Am J Hum
Genet 64:1147–1157

Schork N, Fallin D, Cohen A, Essioux L, Chumakov I, Blu-
menfeld M, Cohen D (2000) Genetic analysis of case/control
data using estimated haplotype frequencies: application to
APOE locus variation and Alzheimer’s disease. Genome Res,
submitted

Weir BS (1996) Genetic data analysis II. Sinauer Associates,
Sunderland, MA


	Accuracy of Haplotype Frequency Estimation for Biallelic Loci, via the Expectation-Maximization Algorithm for Unphased Diploid Genotype Data
	Introduction
	Material and Methods
	Simulated Data Sets
	SNP Haplotype-Estimation Program
	Measures of Estimation Accuracy

	Results
	Algorithm Specifications
	Sampling Error and Sample Size
	Ambiguity and Missing Phase Information
	Haplotype Frequency Distribution
	Haplotype Frequency Values
	Allele Frequencies
	Departure from HWE
	Linkage Disequilibrium
	Multiple Factors

	Discussion
	Acknowledgments
	References


